已知一次函数y1=2x,二次函数y2=x2+1.(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格
已知一次函数y1=2x,二次函数y2=x2+1.(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中:x-3-2-10123y1=2xy2=x2+1(Ⅱ)...
已知一次函数y1=2x,二次函数y2=x2+1.(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中: x -3 -2 -1 0 1 2 3 y1=2x y2=x2+1 (Ⅱ)观察第(Ⅰ)问表中有关的数据,证明如下结论:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≤y2均成立;(Ⅲ)试问,是否存在二次函数y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≤y3≤y2均成立?若存在,求出函数y3的解析式;若不存在,请说明理由.
展开
1个回答
展开全部
解答:解:(Ⅰ)
(Ⅱ)在实数范围内,对于x的同一个值y2=x2+1=(x-1)2+2x,y1=2x,
∵=(x-1)2≥0,
∴y1≤y2;
(Ⅲ)由y1=2x,y2=x2+1得:
y2-y1=x2+1-2x=(x-1)2
即当x=1时,有y1=y2=2.
所以(1,2)点为y1和y2的交点.
因为要满足y1≤y3≤y2恒成立,所以y3图象必过(1,2)点.
又因为y3-y1=ax2+bx+c-2x恒大于等于0,即ax2+(b-2)x+c恒大于等于0,所以二次函数ax2+(b-2)x+c必定开口向上,
即有a>0且(b-2)2-4ac≤0,
同样有y2-y3=(1-a)x2-bx+(1-c)恒大于0,
有 1-a>0 且 b2-4(1-a)(1-c)≤0,
又因为函数过(-5,2)和(1,2)两点,所以有
25a-5b+c=2 ①
a+b+c=2 ②
①-②得 b=4a,
将b=4a代入②得:c=2-5a,
代入(b-2)2-4ac≤0得,
(4a-2)2-4a(2-5a)=16a2-16a+4-8a+20a2
=36×a2-24a+4=4(3a-1)2≤0
等式成立时 a=
,
将b=4a,c=2-5a 代入b2-4(1-a)(1-c)≤0,
(4a)2-4(1-a)(1-(2-5a))=36×a2-24a+4=4(3a-1)2≤0
满足条件a=
所以y3的解析式为y3=
(x2+4a+1)=
x2+
x+
.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y1=2x | -6 | -4 | -2 | 0 | 2 | 4 | 6 |
y2=x2+1 | 10 | 5 | 2 | 1 | 2 | 5 | 10 |
∵=(x-1)2≥0,
∴y1≤y2;
(Ⅲ)由y1=2x,y2=x2+1得:
y2-y1=x2+1-2x=(x-1)2
即当x=1时,有y1=y2=2.
所以(1,2)点为y1和y2的交点.
因为要满足y1≤y3≤y2恒成立,所以y3图象必过(1,2)点.
又因为y3-y1=ax2+bx+c-2x恒大于等于0,即ax2+(b-2)x+c恒大于等于0,所以二次函数ax2+(b-2)x+c必定开口向上,
即有a>0且(b-2)2-4ac≤0,
同样有y2-y3=(1-a)x2-bx+(1-c)恒大于0,
有 1-a>0 且 b2-4(1-a)(1-c)≤0,
又因为函数过(-5,2)和(1,2)两点,所以有
25a-5b+c=2 ①
a+b+c=2 ②
①-②得 b=4a,
将b=4a代入②得:c=2-5a,
代入(b-2)2-4ac≤0得,
(4a-2)2-4a(2-5a)=16a2-16a+4-8a+20a2
=36×a2-24a+4=4(3a-1)2≤0
等式成立时 a=
1 |
3 |
将b=4a,c=2-5a 代入b2-4(1-a)(1-c)≤0,
(4a)2-4(1-a)(1-(2-5a))=36×a2-24a+4=4(3a-1)2≤0
满足条件a=
1 |
3 |
所以y3的解析式为y3=
1 |
3 |
1 |
3 |
4 |
3 |
1 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询