已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1

已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1)求证数列{bn... 已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1)求证数列{bn}为等差数列,并求其通项公式;(2)设cn=1+1b2n+1b2n+1,数列{cn}的前n项和为Sn,求证:n<Sn<n+1. 展开
 我来答
裁决幻灭5f
2014-12-25 · TA获得超过128个赞
知道答主
回答量:134
采纳率:33%
帮助的人:144万
展开全部
(1)方法一  当n≥3时,因bn-2=a12+a22+…+an2-a1a2…an①,
故bn-1=a12+a22+…+an2+an+12-a1a2…anan+1②. …(2分)
②-①,得  bn-1-bn-2=an+12-a1a2…an(an+1-1)=an+12-(an+1+1)(an+1-1)=1,为常数,
所以,数列{bn}为等差数列. …(5分)
因  b1=a12+a22+a32-a1a2a3=4,故  bn=n+3.   …(8分)
方法二  当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2
将上两式相除并变形,得  an+12=an+2-an+1+1.…(2分)
于是,当n∈N*时,bn=a12+a22+…+an+22-a1a2…an+2
=a12+a22+a32+(a5-a4+1)+…+(an+3-an+2+1)-a1a2…an+2
=a12+a22+a32+(an+3-a4+n-1)-(1+an+3
=10+n-a4
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以数列{bn}为等差数列,且bn=n+3. …(8分)
(2)因  cn=1+
1
(n+3)2
+
1
(n+4)2
=
((n+3)(n+4)+1)2
(n+3)2(n+4)2
,…(12分)
故  
cn
=
(n+3)(n+4)+1
(n+3)(n+4)
=1+
1
(n+3)(n+4)
=1+
1
n+3
-
1
n+4

所以  Sn=(1+
1
4
-
1
5
)+(1+
1
5
-
1
6
)+…+(1+
1
n+3
-
1
n+4
)
=n+
1
4
-
1
n+4
,…(15分)
即  n<Sn<n+1. …(16分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式