如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF ∥ BC交AB于E,交AC于F,过点O作OD⊥AC于D

如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线.②以E... 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF ∥ BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线.②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=2n,则S △AEF =mn;④∠BOC=90°+ 1 2 ∠A;其中正确的结论是______. 展开
 我来答
加菲1日422
推荐于2016-01-16 · TA获得超过123个赞
知道答主
回答量:117
采纳率:0%
帮助的人:59.6万
展开全部
①∵EF BC,
∴∠BOE=∠CBO,∠COF=∠BCO,
又,∠ABC和∠ACB的平分线相交于点O,
∴∠EBO=∠CBO,∠FCO=∠BCO,
∴∠EBO=∠BOE,∠FCO=∠COF,
∴EB=EO,FC=FO,
假设EF是△ABC的中位线,则EA=EB,FA=FC,
∴EO=EA,FO=FA,
∴EA+FA=EO+FO=EF,
推出在△AEF中两边之和等于第三边,不成立,所以①结论不正确.
②由①得EB=EO,FC=FO,
即EO,FO分别为两圆的半径,又EF=EO+FO,所以两圆外切,
所以②正确.
③连接AO,过O作OG⊥AB于G,
由,∠ABC和∠ACB的平分线相交于点O,
得:OG=OD=m,
所以三角形AEF的面积=三角形AOE的面积+三角形AOF的面积
=
1
2
?AE?OG+
1
2
?AF?OD=
1
2
(AE?m+AF?m)=
1
2
m(AE+AF)
=
1
2
m?2n=mn.
所以③正确.
④由,∠ABC和∠ACB的平分线相交于点O得:
∠CBO=
1
2
∠ABC,∠BCO=
1
2
∠ACB,
∠BOC=180°-(∠CBO+∠BCO)
=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=90°+
1
2
∠A.
所以④正确.
故答案为:②③④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式