如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD

如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的... 如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm (1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示). 展开
 我来答
小裙子9溲
2015-02-03 · TA获得超过331个赞
知道答主
回答量:197
采纳率:0%
帮助的人:83.7万
展开全部
(1)DE为⊙O的切线,理由见解析  (2) (cm) 2


试题分析:(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE为⊙O的切线;
(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S 阴影部分 =S 梯形BODE -S 扇形OBD 进行计算即可.
试题解析:(1)DE与⊙O相切.理由如下:
连结OD,BD,则∠ABD=∠ACD=45°,

∵AB是直径,
∴∠ADB=90°,
∴△ADB为等腰直角三角形,
∵点O为AB的中点,
∴OD⊥AB,
∵DE∥AB,
∴OD⊥DE,
∵OD是半径,
∴DE为⊙O的切线;
(2)∵BE∥AD,DE∥AB,
∴四边形ABED为平行四边形,
∴DE=AB=8cm,
∴S 阴影部分 =S 梯形BODE -S 扇形OBD =  (cm) 2
考点: 1.切线的判定;2.扇形面积的计算.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式