分块矩阵乘法如下图:
分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。
性质:
1、同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。
2、数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。
3、分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。