展开全部
分享解法如下。分子有理化,原式=lim(x→∞)2/[√(x²+1)+√(x²-1)]=0。
供参考。
供参考。
追问
请问这个式子怎么变成分式的呢
追答
视原式的分母为1,分子分母同乘以“√(x²+1)+√(x²-1)”即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-02-25
展开全部
倒代换然后洛必达
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
视分母为 1, 分子分母同乘以 √(x^2+1) + √(x^2-1),
原式 = lim<x→∞>2/[√(x^2+1) + √(x^2-1)] = 0
原式 = lim<x→∞>2/[√(x^2+1) + √(x^2-1)] = 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询