sinx带有佩亚诺余项的n阶麦克劳林公式是怎么写?
展开全部
^^sinx=x-1/3(x^3)+······+(-1)^n{1/(2x+1)!}(x^2n+1)+{Xn}
cosx=1-1/2!(X^2)+1/4!(X^4)-·······+(-1)^n{1/(2n)!}(x^2n)+{Xn}
^sinx=x-x^3/3!+o(x^3)
cosx=1-x^2/2!+o(x^3)
xcosx=x-x^3/2!+o(x^4)
sinx-xcosx=1/3x^3+o(x^3)
o(x^4)是比o(x^3)更高阶的无穷小量,两者的差还是o(x^3)
扩展资料:
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
参考资料来源:百度百科-泰勒公式
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询