已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD." (Ⅰ)求证:BC∥平面PAD;(Ⅱ)若E

已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD."(Ⅰ)求证:BC∥平面PAD;(Ⅱ)若E、F分别为PB,AD的中点,求证:EF... 已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD." (Ⅰ)求证:BC∥平面PAD;(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;(Ⅲ)求二面角C-PA-D的余弦值. 展开
 我来答
O絼徱
推荐于2016-07-08 · 超过58用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:134万
展开全部
(Ⅰ)见解析; (Ⅱ) 见解析;(Ⅲ) .


试题分析:(Ⅰ)证明BC∥AD,利用线面平行的判定,证明BC∥平面PAD;
(Ⅱ)利用线面垂直的判定证明BC⊥面EFG,即可证明EF⊥BC;
(Ⅲ)设PA的中点为N,连结DN,NC,证明∠CND是所求二面角的平面角,从而可求二面角C-PA-D的余弦值.
试题解析:(Ⅰ)证明:因为ABCD是正方形,所以BC∥AD.
因为AD?平面PAD,BC 平面PAD,
所以BC∥平面PAD.…(4分)
(Ⅱ)证明:因为PD⊥底面ABCD,且ABCD是正方形,所以PC⊥BC.
设BC的中点为G,连结EG,FG,则EG∥PC,FG∥DC.
所以BC⊥EG,BC⊥FG.…(6分)
因为EG∩FG=G,所以BC⊥面EFG.
因为EF?面EFG,所以EF⊥BC.…(8分)
(Ⅲ)解:设PA的中点为N,连结DN,NC,

因为PD=AD,N为中点,所以DN⊥PA.
又△PAC中,PC=AC,N为中点,所以NC⊥PA.
所以∠CND是所求二面角的平面角.…(10分)
依条件,有CD⊥PD,CD⊥AD,
因为PD∩AD=D,所以CD⊥面PAD.
因为DN?面PAD,所以CD⊥DN.
在Rt△CND中,DN= ,NC= .于是Cos∠CND= .…(13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式