如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE

如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.(1)当点D在线段BC上时(如图1),... 如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.(1)当点D在线段BC上时(如图1),求证:DC+CE=2AC;(2)当点D在线段CB延长线上时(如图2);当点D在线段BC延长线上时(如图3),探究线段DC、CE、AC之间的数量关系分别为,图2:______; 图3:______; 展开
 我来答
三昧33141滥恳
2015-01-26 · TA获得超过134个赞
知道答主
回答量:139
采纳率:100%
帮助的人:71.7万
展开全部

解:(1)如图1所示,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,
即∠BAD+∠DAC=90°,
同理有AD=AE,∠DAC+∠CAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=CE,
∴BC=CE+DC,
在Rt△ABC中,BC=
2
AC,
∴CE+DC=
2
AC;

(2)在图2中,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,
即∠BAE+∠EAC=90°,
同理有AD=AE,∠DAB+∠BAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=CE,
又∵BC+BD=CD,
∴BC=CD-CE,
2
AC=CD-CE;
在图3中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ACE≌△ABD,
∴BD=CE,
即BC+CD=CE,
∴BC=CE-CD,
2
AC=CE-CD.
故答案是
2
AC=CD-CE;
2
AC=CE-CD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式