高一数学,给你答案及过程,只是一个地方不解,求指点,必采纳(第二小问) 答案: 令在定义域内的x1

高一数学,给你答案及过程,只是一个地方不解,求指点,必采纳(第二小问)答案:令在定义域内的x1>x2由于是减函数,所以f(x1)-f(x2)<0.带入f(x)=√(3-a... 高一数学,给你答案及过程,只是一个地方不解,求指点,必采纳(第二小问)
答案:
令在定义域内的x1>x2
由于是减函数,所以
f(x1)-f(x2)<0.带入f(x)=√(3-ax)/(a-1)
[√(3-ax1)-√(3-ax2)]/(a-1)<0
下面我们对a进行分类讨论
①a>1时
a-1>0,要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)<√(3-ax2)因为3-ax1<3-ax2在a>1时恒成立
所以,只需讨论根号下的数大于0这个限制条件
解得a∈(0,3]
②a<1时,a-1<0
要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)>√(3-ax2),3-ax1>3-ax2在a<0时成立,
且a<0时,定义域内的x可使函数恒有意义

综上所述,a的取值范围是
(-∞,0)∪(1,3]
不解的地方: 所以,只需讨论根号下的数大于0这个限制条件
解得a∈(0,3] 为什么
展开
yangbiao09
2014-11-12 · TA获得超过179个赞
知道小有建树答主
回答量:197
采纳率:71%
帮助的人:45.2万
展开全部
√(3-ax1)<√(3-ax2)因为3-ax1<3-ax2在a>1时恒成立 这一步看懂没?看懂的话这就很好理解了,f(x)在(0,1]上是减函数,则g(x)=√(3-ax)在(0,1]上也是减函数。求出g(x)的定义域对比减函数区间就得出a∈(0,3]了。
更多追问追答
追问
为什a属于0,3
我就这不懂
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式