已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF. (1)如图1,当点D在AB

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、C... 已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF. (1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果). 展开
 我来答
手机用户92676
2014-12-06 · TA获得超过124个赞
知道答主
回答量:127
采纳率:0%
帮助的人:155万
展开全部
(1)DF=CF,且DF⊥CF;(2)(1)中的结论仍然成立,证明见解析;(3) .


试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;
(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;
(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=  ,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF= BE,CF= BE. ∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.
∵BF=DF,∴∠DBF=∠BDF.
∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.
∴DF=CF,且DF⊥CF.
(2)(1)中的结论仍然成立.证明如下:
如图,此时点D落在AC上,延长DF交BC于点G.
∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.
∵AD=DE,∴AD=GB.
∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.
∵∠ACB=90°,∴△DCG是等腰直角三角形.
∵DF=GF,∴DF=CF,DF⊥CF.

(3)如图,延长DF交BA于点H,
∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°.
∵由旋转可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.
∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.
∵AC= ,在Rt△ABC中,由勾股定理,得AB=4.
∵AD=1,∴ED=BH=1.∴AH=3.
在Rt△HAD中,由勾股定理,得DH=
∴DF= ,∴CF= .
∴线段CF的长为 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式