如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列
如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转6...
如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S 四边形AOBO ;⑤S △AOC +S △AOB = .其中正确的结论是( ) A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③
展开
2甭谆4
推荐于2016-12-01
·
TA获得超过273个赞
知道答主
回答量:147
采纳率:88%
帮助的人:61.8万
关注
证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确; 由△OBO′是等边三角形,可知结论②正确; 在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确; S四边形AOBO′=S△AOO′+S△OBO′="6+4" 3,故结论④错误; 如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确. 解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3, 又∵OB=O′B,AB=BC, ∴△BO′A≌△BOC,又∵∠OBO′=60°, ∴△BO′A可以由△BOC绕点B逆时针旋转60°得到, 故结论①正确; 如图①,连接OO′, ∵OB=O′B,且∠OBO′=60°, ∴△OBO′是等边三角形, ∴OO′=OB=4. 故结论②正确; ∵△BO′A≌△BOC,∴O′A=5. 在△AOO′中,三边长为3,4,5,这是一组勾股数, ∴△AOO′是直角三角形,∠AOO′=90°, ∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°, 故结论③正确; S 四边形AOBO′ =S △AOO′ +S △OBO′ = , 故结论④错误; 如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点. 易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO″ =S △COO″ +S △AOO″ = , 故结论⑤正确. 综上所述,正确的结论为:①②③⑤. 故选A. |
收起
为你推荐: