2个回答
展开全部
此题的解答过程是:
1/1×3+1/3×5+1/5×7+…+1/99×101
=1/2×(1-1/3)+1/2×(1/3-1/5)+1/2×(1/5-1/7)+……+1/2×(1/99-1/101)
=1/2×(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)
=1/2×(1-1/101)
=1/2×100/101
=50/101
解答依据:
此题可根据拆项的方法计算比较简便。
1/1×3=1/2×(1-1/3)
1/3×5=1/2×(1/3-1/5)
1/5×7=1/2×(1/5-1/7)
……………………………
通项公式是:
1/n(n+2)=1/2×[1/n-1/(n+2)]
1/1×3+1/3×5+1/5×7+…+1/99×101
=1/2×(1-1/3)+1/2×(1/3-1/5)+1/2×(1/5-1/7)+……+1/2×(1/99-1/101)
=1/2×(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)
=1/2×(1-1/101)
=1/2×100/101
=50/101
解答依据:
此题可根据拆项的方法计算比较简便。
1/1×3=1/2×(1-1/3)
1/3×5=1/2×(1/3-1/5)
1/5×7=1/2×(1/5-1/7)
……………………………
通项公式是:
1/n(n+2)=1/2×[1/n-1/(n+2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询