1个回答
展开全部
你的极限好象做错了,我用两种方法都连续
lim(x->0, y->0)(xy)/(x^2+y^2)^(1/2) <=lim(x->0,y->0) |xy|/(x^2+y^2)^(1/2)<=lim|xy|/(根(2xy))=0
故连续。
lim(xy)/(x^2+y^2)^(1/2) x->0时
=0/y^2=0
y->0时,也=0
所以,在整个xoy平面上分别对于每一个变量x或y(当另一个变量固定时)是连续的,
而:设y=kx时,
lim(xy)/(x^2+y^2)^(1/2) x->0+
=0*k/(1+k^2)^(1/2)=0与k无关。
x->0-时,也为0
故是连续的。
lim(x->0, y->0)(xy)/(x^2+y^2)^(1/2) <=lim(x->0,y->0) |xy|/(x^2+y^2)^(1/2)<=lim|xy|/(根(2xy))=0
故连续。
lim(xy)/(x^2+y^2)^(1/2) x->0时
=0/y^2=0
y->0时,也=0
所以,在整个xoy平面上分别对于每一个变量x或y(当另一个变量固定时)是连续的,
而:设y=kx时,
lim(xy)/(x^2+y^2)^(1/2) x->0+
=0*k/(1+k^2)^(1/2)=0与k无关。
x->0-时,也为0
故是连续的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询