
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数...
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(Ⅲ)若f(1)=32,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.
展开
1个回答
展开全部
(Ⅰ)∵函数f(x)是定义域为R的奇函数,∴f(0)=0,
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a?
<0,
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
,
∴a?
=
,即2a2-3a-2=0,
∴a=2或a=?
(舍去).
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
,
令h(t)=t2?2m+2=(t?m)2+2?m2(t≥
),
若m≥
,当t=m时,h(t)min=2?m2=?2,∴m=2;
若m<
,当t=
时,h(t)min=
?3m=?2,解得m=
>
,故舍去.
综上可知m=2.
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a?
1 |
a |
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
3 |
2 |
∴a?
1 |
a |
3 |
2 |
∴a=2或a=?
1 |
2 |
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
3 |
2 |
令h(t)=t2?2m+2=(t?m)2+2?m2(t≥
3 |
2 |
若m≥
3 |
2 |
若m<
3 |
2 |
3 |
2 |
17 |
4 |
25 |
12 |
3 |
2 |
综上可知m=2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询