大数据是什么?
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
2019-06-26 广告
2021-05-24 · 每时每课,给你新机会!
你好,大数据是指巨量的数据,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
当下,大数据技术作为新兴技术被许多互联网大厂所需,以华为为例。
1、华为云推出大数据稽核方案解决偷逃费
很多朋友可能发现,部分省界收费站变少而ETC通道在增加,高速公路的出行体验比以前更加顺畅。然而,在公众体验节省费用、便捷通行等利好的同时,高速公路的管理运营单位却饱受新情况的困扰。
部分车主偷逃费方式多样化,包括换卡逃费、车头挂车分离逃费、倒换电子标签、ETC车道跟车逃费等。同时偷逃费行为向专业化、团伙化演变,给高速运营单位带来大量经济损失和严峻挑战。
目前收费卡口仍主要使用传统稽核方法。传统方式通常基于初步的车辆行驶异常信息作筛查依据,如频繁进出站等,却难以发现大量逃费,存在的主要问题是:
大数据分析应用较少,缺乏数据深度分析
基本以收费数据为主,视频/图片等辅助证据不足
依赖大量人工进行稽核,效率低下
针对传统稽核方法的不足之处,华为云正式推出高速公路大数据稽核解决方案。
该方案基于华为云业界领先的云数字平台,结合华为在高速公路行业的深厚积淀,利用大数据、人工智能、云计算等技术,实现了海量通行记录数据的偷逃费自动分析,并结合门架摄像头抓拍的图像记录实现偷逃费车辆的精准识别,保障高速业主收益。
华为云大数据稽核解决方案包括三大平台:
AI边缘稽核平台,基于华为自研鲲鹏920和升腾310芯片+智能边缘平台IEF Edge架构,实现30+车辆特征和上万种车型的识别、稽核场景的实时处理,车辆通行照片的存储;
大数据稽核平台,主要包括基础设施层、平台层、使能层、应用层:
基础设施层:提供计算、存储、网络等基础资源
平台层:提供智能数据湖平台DAYU、AI开发平台ModelArts、边缘管理平台IEF、数据库及中间件等通用平台及组件
使能层:提供车辆识别算法、以图搜图、路径还原等基础能力
应用层:包括稽核系统、客服系统等其他公共服务类系统,其中稽核系统主要实现偷逃费模型、通行记录分析、证据链管理、信用管理、黑白名单管理等稽核相关功能
车辆特征训练开发平台,实现新的车型识别和车辆特征识别能力的持续提升,车辆异常通行照片的持久存储;其中ModelArts是一站式AI训练开发平台,提供车型和车辆特征的海量数据预处理及半自动化标注、大规模分布式训练、车辆识别模型自动化生成、云边按需部署模型等能力。
2、华为大数据工程师
华为云致力于为客户提供高度可信的业务运行环境,易获取、按需使用、弹性扩展的云安全服务,帮助客户保护云上的应用系统和重要数据,华为云已获得了CSA STAR、ISO安全体系等20多个安全合规认证,并在2018年就高分通过了等保四级测评。
目前,包括腾讯、阿里等互联网头部企业在内的大厂,均在积极使用大数据、云计算等技术为产品赋能。例如最早使用大数据技术实现音乐推荐个性化的网易云音乐、在电商平台普遍使用的商品推荐功能等等,均是基于大数据技术运用的代表。
以华为为例,华为给1-3年经验的大数据开发工程师开到了高达4万的月薪,在其他大厂的招聘中30k-60k的大数据开发工程师,也只要1-3年工作经验,可以说大数据、云计算仍是当下的红利岗位。
希望我的回答对你有所帮助!
2021-08-16 · 电脑培训、IT教育、职业技能培训。
列举三个常用的大数据定义:
(1)具有较强决策、洞察和流程优化能力的海量、高增长、多样化的信息资产需要新的处理模式。
——Gartner
(2)海量数据量、快速数据流和动态数据速度、多样的数据类型和巨大的数据价值。
—— IDC
(3)或者是海量数据、海量数据、大数据,是指所涉及的数据太大,无法在合理的时间内被截取、管理、处理、整理成人类可以解读的信息。
—— Wiki
大数据的其他定义也差不多,可以用几个关键词来定义大数据。
首先是“大尺度”,可以从两个维度来衡量,一是从时间序列中积累大量数据,二是对数据进行深度提炼。
其次,“多样化”可以是不同的数据格式,比如文字、图片、视频等。,可以是不同的数据类别,如人口数据、经济数据等。,也可以有不同的数据源,如互联网和传感器等。
第三,“动态”。数据是不断变化的,它可以随着时间迅速增加大量的数据,也可以是在空间不断移动变化的数据。
这三个关键词定义了大数据的形象。
但是,需要一个关键能力,就是“处理速度快”。如果有这样的大规模、多样化、动态的数据,但是需要很长时间的处理和分析,那就不叫大数据。从另一个角度来说,要实现这些数据的快速处理,肯定没有办法手工实现,所以需要借助机器来实现。
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
具体来说,大数据具有4个基本特征:
一是数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。