如图,在四边形ABCD中,AB∥CD,点M、N分别是AB,CD的中点,∠ADC+∠BCD=270°,证明:MN=12(AB-CD

如图,在四边形ABCD中,AB∥CD,点M、N分别是AB,CD的中点,∠ADC+∠BCD=270°,证明:MN=12(AB-CD)... 如图,在四边形ABCD中,AB∥CD,点M、N分别是AB,CD的中点,∠ADC+∠BCD=270°,证明:MN=12(AB-CD) 展开
 我来答
异人0028
推荐于2016-12-01 · TA获得超过165个赞
知道答主
回答量:117
采纳率:0%
帮助的人:115万
展开全部
证明:延长AD和BC交于点E.连接EM,则EM一定经过点N.
∵∠ADC+∠BCD=270°,
∴∠A+∠B=360°-270°=90°,即△ABE和△CDE都是直角三角形.
∵M是AB的中点,
∴EM=
1
2
AB,
同理,EN=
1
2
CD,
∴EM-EN=
1
2
(AB-CD),
即MN=
1
2
(AB-CD).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式