如图所示,物块M和m用一不可伸长的细绳通过定滑轮连接,m放在倾角θ=30°的固定光滑斜面上,而穿过竖直杆

如图所示,物块M和m用一不可伸长的细绳通过定滑轮连接,m放在倾角θ=30°的固定光滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m=1Kg,开始时,将M抬高... 如图所示,物块M和m用一不可伸长的细绳通过定滑轮连接,m放在倾角θ=30°的固定光滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m=1Kg,开始时,将M抬高到A点,使细绳水平,此时OA段绳长为L=4.0m,现M由静止开始下滑,回答下列问题:(1)物块m的机械能是否守恒?若守恒,请说出理由;若不守恒,请说出机械能如何变化,变化的大小与什么力做功相等?(2)当M下滑3.0m至B点时的速度为多大?(3)当M下滑3.0m至B点的过程中,绳对M做的功为多大?(g取10m/s2) 展开
 我来答
泽速浪2834
推荐于2016-12-01 · TA获得超过201个赞
知道答主
回答量:123
采纳率:50%
帮助的人:56.2万
展开全部
(1)由于物体m上升过程中,不只是重力做功,绳子拉力做正功,所以物体m的机械能不守恒,根据功能关系“除重力以外其它力做的功等于物体机械能的变化”可知物体m的机械能增加,且增加的机械能等于绳子拉力对物体m做的功.
(2)由于两个物体组成的系统在运动过程中只有重力做功,系统机械能守恒,设M到B点时速度
v
 
1
,m的速度为
v
 
2
,则有:
Mgh-mg(OB-OA)sinθ=
1
2
M
v
2
1
+
1
2
mv
2
2
  ①
由图可知OB=
O
A
2
 
+A
B
2
 
=5m,所以sin∠AOB=
AB
OB
=0.6,即∠AOB=37°,再根据速度的分解,把v1沿OB方向分解,
v
 
2
=
v
 
1
sin37°②
联立①②并代入数据解得
v
 
1
=7.1m/s.
即M下滑至B点时的速度为7.1m/s.
(3)对M运用动能定理:Mgh+W=
1
2
M
v
2
1
-0
解得W=-4.8J
即当M下滑3m的过程中,绳对M做的功为-4.8J.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式