带绝对值的定积分求解
(最下面有图)\!\(\*SubsuperscriptBox[\(\[Integral]\),\(0\),\(2\[Pi]\)]\(Abs[Sin[x]-\*Fracti...
(最下面有图)
\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(2 \[Pi]\)]\(Abs[
Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x]] \[DifferentialD]x\)\)
为什么不等于
\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]]\), \(Pi + ArcTan[
\*FractionBox[\(3\), \(4\)]]\)]\(\((Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x])\) \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]] - Pi\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]]\)]\(\(-\((Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x])\)\) \[DifferentialD]x\)\) 展开
\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(2 \[Pi]\)]\(Abs[
Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x]] \[DifferentialD]x\)\)
为什么不等于
\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]]\), \(Pi + ArcTan[
\*FractionBox[\(3\), \(4\)]]\)]\(\((Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x])\) \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]] - Pi\), \(ArcTan[
\*FractionBox[\(3\), \(4\)]]\)]\(\(-\((Sin[x] -
\*FractionBox[\(4\), \(3\)] Cos[x])\)\) \[DifferentialD]x\)\) 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |