cosx的极限是什么?
1个回答
展开全部
极限不存在。
cosx是周期函数,它的取值范围位于-1到1之间,当x=0,2π......2nπ达到最大值1,当x=π,3π......(2n-1)π达到最小值-1,所以它的最大值为2,最返档小值为0,不会有极限只有最大值最小值。x-无穷大,它地值在[-1,1]内不断地出现,它地趋势时不确定地,没有极限。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在橡世缺准梁辩则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
7、利用两个重要极限公式求极限。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询