若XYZ均为正整数,则(xy+yz)/[(x^2)+(y^2)+(z^2)]的最大值为

 我来答
回从凡7561
2022-06-12 · TA获得超过789个赞
知道小有建树答主
回答量:297
采纳率:100%
帮助的人:52.1万
展开全部
(x^2)+(y^2)+(z^2)
= x^2 + 1/2y^2 + 1/2y^2 + z^2
≥ 2√(1/2)xy + 2√(1/2)yz
=√2 (xy+yz)
所以(xy+yz)/[(x^2)+(y^2)+(z^2)] ≤ √2/2
最大值为√2/2
当√2x = y = √2z时取得
(注:这里x,y,z应该是正数,而不是正整数,否则无法取得最大值√2/2,但可以无限接近)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式