根号下1-(x的平方)分之1+(x的平方)的积分
1个回答
展开全部
令x=sinu,则:u=arcsinx,dx=cosudu.
∫[(1+x^2)/√(1-x^2)]dx
=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu
=∫[1+(sinu)^2]du
=∫du+∫(sinu)^2du
=u+(1/2)∫(1-cos2u)du
=u+(1/2)∫du-(1/2)∫cos2udu
=u+(1/2)u-(1/4)∫cos2ud(2u)
=(3/2)u-(1/4)sin2u+C
=(3/2)arcsinx-(1/2)sinucosu+C
=(3/2)arcsinx-(1/2)x√(1-x^2)+C
注:若题目不是我所猜测的那样,则请补充说明.
∫[(1+x^2)/√(1-x^2)]dx
=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu
=∫[1+(sinu)^2]du
=∫du+∫(sinu)^2du
=u+(1/2)∫(1-cos2u)du
=u+(1/2)∫du-(1/2)∫cos2udu
=u+(1/2)u-(1/4)∫cos2ud(2u)
=(3/2)u-(1/4)sin2u+C
=(3/2)arcsinx-(1/2)sinucosu+C
=(3/2)arcsinx-(1/2)x√(1-x^2)+C
注:若题目不是我所猜测的那样,则请补充说明.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询