哪些情况下必须计算离散系数来比较两个数列的离散程度大小

 我来答
博学小赵爱生活
高能答主

2020-05-30 · 专注于食品生活科技行业
博学小赵爱生活
采纳数:456 获赞数:111889

向TA提问 私信TA
展开全部

必须计算离散系数来比较两个数列的离散程度大小,平均数大的标准差亦大,平均数小的标准差亦小,两数列的计量单位不同。

离散系数反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。

一组数据的标准差与其相应的均值之比,是测度数据离散程度的相对指标,其作用主要是用于比较不同组别数据的离散程度。 

扩展资料:

一组数据计算它的离散度:

1、极差

最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法最为常见,比如比赛中去掉最高最低分就是极差的具体应用。

2、离均差的平方和

由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度,越大离散度也就越大。

但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数相加为零的。为了避免正负问题。

在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值相加。而为了避免符号问题,数学上最常用的是另一种方法——平方,这样就都成了非负数。因此,离均差的平方累加成了评价离散度一个指标。

3、方差(S2)

由于离均差的平方累加值与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。

我们知道,样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n–1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n–1。

4、标准差(SD)

由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。

参考资料来源:百度百科-离散系数

参考资料来源:百度百科-标准差




推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式