对数问题.. log以8为底 3 =a log以3为底 5 =b 求lg5用ab表示
1个回答
展开全部
log(3,8) = a .lg3/lg8 = a .换底公式log(x,y) = lgx/lgy
log(5,3) = b .lg5/lg3 = b
a*b = lg5/lg8
= lg5/lg(2^3)
= lg/(3*lg2)
= lg5/[3*(1 - lg5)]
令 x = lg5
3ab = x/(1 - x)
3ab - 3ab*x = x
x = 3ab/(1 + 3ab)
lg5 = 3ab/(1 + 3ab)
log(5,3) = b .lg5/lg3 = b
a*b = lg5/lg8
= lg5/lg(2^3)
= lg/(3*lg2)
= lg5/[3*(1 - lg5)]
令 x = lg5
3ab = x/(1 - x)
3ab - 3ab*x = x
x = 3ab/(1 + 3ab)
lg5 = 3ab/(1 + 3ab)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询