如何求1的平方+2的平方+3的平方+.+n的平方的前n项和?

 我来答
华源网络
2022-05-31 · TA获得超过5575个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:144万
展开全部
设S=1^2+2^2+.+n^2
(n+1)^3-n^3 = 3n^2+3n+1
n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1
...
..
...
2^3-1^3 = 3*1^2+3*1+1
把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+.+n] +n
所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式