一道积分题∫[0,1]dx∫[x,1]e^(-y^2)dy
展开全部
交换积分顺序
∫[0,1]dx∫[x,1]e^(-y^2)dy
=∫[0,1]dy∫[y,0]e^(-y^2)dx
=∫[0,1]ye^(-y^2)dy
=(1/2)∫[0,1]e^(-y^2)d(y^2)
=(1/2)[-e^(-y^2)] | [0->1]
=(1/2)[1-e^(-1)]
∫[0,1]dx∫[x,1]e^(-y^2)dy
=∫[0,1]dy∫[y,0]e^(-y^2)dx
=∫[0,1]ye^(-y^2)dy
=(1/2)∫[0,1]e^(-y^2)d(y^2)
=(1/2)[-e^(-y^2)] | [0->1]
=(1/2)[1-e^(-1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询