在三角形ABC中,角A、B、C的对边分别为a、b、c,且cosC/cosB=3a-c/b,求sinB的值

Kida_M
2008-08-01 · TA获得超过1236个赞
知道小有建树答主
回答量:333
采纳率:0%
帮助的人:333万
展开全部
由正弦定理得,
(3a-c)/b=(3sinA-sinC)/sinB=cosC/cosB
所以,
3sinAcosB-sinCcosB=sinBcosC
3sinAcosB=sin(B+C)=sinA
所以
cosB=1/3
所以
sinB=根号(1-1/9)=(2根号2)/3
付英侃
2008-08-01 · TA获得超过2142个赞
知道小有建树答主
回答量:369
采纳率:0%
帮助的人:377万
展开全部
解:由题中所给式子可得cosB=b*cosC/(3a-c)
由余弦定理可得cosC=(a^2+b^2-c^2)/2ab,cosB=(a^2+c^2-b^2)/2ac
∴代入上式可得(a^2+c^2-b^2)/c=(a^2+b^2-c^2)/(3a-c)
整理得,2a^2*c=3a^3+3a*c^2-3a*b^2,左右各约去一个a,得
(a^2+c^2-b^2)/2ac=1/3=cosB
∵cosB>0 ∴B为锐角,sinB>0 ∴(sinB)^2=1-(cosB)^2=8/9
,sinB=(2√2)/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式