对数定义域是什么?
展开全部
对于对数函数y=logg(x)来说,其定义域为:1、对数函数的真数g(x)>0;2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:在一个普通对数式里a0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。
值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0奇偶性:非奇非偶函数周期性:不是周期函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询