空间点到平面的距离公式推导是什么?

 我来答
中途的驿站
2022-04-04 · TA获得超过579个赞
知道答主
回答量:187
采纳率:0%
帮助的人:3.5万
展开全部

空间点到平面的距离公式推导:

设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以

d=|QP|*sin=/|s|=|QP×s|/|s|。

平行线之间的距离公式:

设两条直线方程为。

Ax+By+C1=0。

Ax+By+C2=0。

则其距离公式为|C1-C2|/√(A²+B²)。

相关推导

两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为。

d=|Aa+Bb+C2|/√(A²+B²)。

=|-C1+C2|/√(A²+B²)。

=|C1-C2|/√(A²+B²)。

几何智造
2025-03-08 广告
几何智造186-7679-5154(深圳市几何智造技术有限公司)是一家高新科技创新型企业,专注于国际物流行业货物高精度测量、自动化分拣、高性能输送线、智能仓储服务以及控制系统研发,专为国际货代行业提供全自动化高效率的物流解决方案。旗下主要产... 点击进入详情页
本回答由几何智造提供
金墙刺纱腰i
2022-04-01 · TA获得超过5904个赞
知道小有建树答主
回答量:2016
采纳率:100%
帮助的人:43.6万
展开全部

空间点到平面的距离公式推导:

设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。

距离d是向量QP在法向量n上投影的绝对值,即

d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|

=|QP·n|/|n|。

平面直角坐标系中点到已知解析式的直线的最短距离公式。

已知解析式的直线AX+BY+C=0。

平面直角坐标系中点(X0,Y0)。

最短距离=|AX0+BY0+C|/根号(A方+B方)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式