求极限(x趋向于0时)lim[sinx-sin(sinx)]/(sinx)^3
1个回答
展开全部
0比0型极限,请用洛必达法则.即,分式上下分别求导.
[sinx-sin(sinx)]‘=cosx-cosxcos(sinx),x→0,→1-1*1=0
(sinx)^3=3cosxsinx^2=0
继续使用洛必达法则
【cosx-cosxcos(sinx)】'=sinx+sinxcos(sinx)+cosxcosxsin(sinx)=0
[3cosxsinx^2]'=-3sinx^3+6cosx^2*sinx=0
继续使用,
【-sinx+sinxcos(sinx)+cosxcosxsin(sinx)】’=-cosx+cosxcos(sinx)-sinxcosxsin(sinx)-2cosxsinxsin(sinx)+2cosx^2*cosxcos(sinx)=-1+1-0-0+2=2.[-3sinx^3+6cosx^2*sinx]'=-9cosxsinx^2-12cosxsinx*sinx+6cosx^2*cosx=6
所以,lim=2/6=1/3.请验算,不对请追问.
[sinx-sin(sinx)]‘=cosx-cosxcos(sinx),x→0,→1-1*1=0
(sinx)^3=3cosxsinx^2=0
继续使用洛必达法则
【cosx-cosxcos(sinx)】'=sinx+sinxcos(sinx)+cosxcosxsin(sinx)=0
[3cosxsinx^2]'=-3sinx^3+6cosx^2*sinx=0
继续使用,
【-sinx+sinxcos(sinx)+cosxcosxsin(sinx)】’=-cosx+cosxcos(sinx)-sinxcosxsin(sinx)-2cosxsinxsin(sinx)+2cosx^2*cosxcos(sinx)=-1+1-0-0+2=2.[-3sinx^3+6cosx^2*sinx]'=-9cosxsinx^2-12cosxsinx*sinx+6cosx^2*cosx=6
所以,lim=2/6=1/3.请验算,不对请追问.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询