求证sinx=x只有一实根

 我来答
世纪网络17
2022-07-05 · TA获得超过5924个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:139万
展开全部
1)直接证明.
可设函数 f(x)=sinx - x ,则 f'(x)=cosx - 1 [ f'(x) 表示求导],
因 cosx≤1,所以 f'(x)≤0,那么 f(x) 在 (-∞,+∞) 内单调递减,其图像与 x轴仅有一个交点,故 方程 sinx - x=0 (即 sinx=x)只有一个实根 x=0.
[注:虽然 f(x) 不是“严格单减”,但其驻点 ---- 即 x=2kπ,k∈Z ---- 都是离散的,所以 f(x) 不可能在 x 的某一个邻域 (x-△,x+△) 内为恒值,当然也就不可能在 x=0 的邻域 (0-△,0+△) 内恒为 0.]
(2)反证法.
设方程 sinx - x=0 至少有两个根,且相邻的两根为 x1,x2(不妨设 x1<x2),由于 f(x)=sinx - x 是连续可导函数,那么在 (x1,x2) 内必有一个极值点 x3,因此在区域 (x1,x3) 或 (x3,x2) 必存在“单调递增”区域,这与 f'(x)=cosx - 1≤0 矛盾,所以 方程 sinx - x=0 仅有一个实根 x=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式