对于随机变量而言,每一个值都对应着试验中发生的一个概率,记为 ,离散型随机变量的取值范围是有限可列的,因此,随机变量的 个取值就有 种概率。那么,好事者需要知道这个随机变量所有的取值,就诞生了 分布律 的概念。
在进行随机试验的结果中,第一次试验的结果可能不尽人意,因此你想要尝试再试一次,直到。。。10次投掷之后,你仍然在大本营里转悠,回头看看这10次试验的所有结果,你发现,在这10次结果中,你的点数是这样的:
看了这10次的结果,你需要尽快出门,于是修改了规则: 不需要扔到6点,只要扔到点数小于 4即可,这样的话,小于 任意一个实数 的所有可能性之和,称作为 分布函数 。通俗的说,就是研究的目标从一个点变成了一个 范围 。那么,用数学公示表达就是: ,在你的提议中, 。你能够大本营离开的几率从原来的 ;提升到了 。
这个标题应该划分成:随机变量 / 的函数 / 的分布函数。
依旧是飞行棋,你的对手一听,小于4点你就能走了?为了尽可能保证自己的优势,又防止你放弃游戏,就说,这样吧,你 投的点数的平方小于6,你才能走 ,这样的话,"投的点数的平方" 就是一个随机变量的函数,即 ,那么这样的话:
你朋友的内心OS:1/2太大了,整小点,我可能会多走几步。于是乎就有了
你终于出门了,但是发现对手已经跑完半圈了,这个时候,他提议要不然玩点刺激的:在掷骰子之前,先掷硬币,正面向上,你掷骰子的点数翻倍,若是硬币反面朝上,你掷骰子的点数是多少,你后退多少步。
同样的
那么,在二维连续型随机变量中,两个随机变量共同决定的概率密度,叫做 联合概率密度 。我要 求边缘概率密度 怎么办?以 为例,随机变量 的概率密度和 没有关系,那就把令关于 部分的和为1就好了,也就是求 联合概率密度对 求积分。
更进一步地想, 联合分布函数(二维) 是对随机变量 和 在内的积分,也就是说,其实就是两个实数: 在 平面上圈了一块地,现在要在这块地上建一个房子。
这个房子有两个要求:
那么两个随机变量的函数的分布又是一个什么鬼?
两人按照要求盖好了房子,准备入住,另一个随机变量 过来说,我也要盖房子,给我一点建议吧。我呢,你们俩凑合凑合就可以伪装成我,即:
说白了, 就是在 原有 基础上 ,加了一点点限制,比如若 ,限制为 ;若限制关系为: ,则有 。
既然多了限制, 的取值范围就要做出相应的调整。
需要注意的点有:
2024-10-13 广告