1个回答
展开全部
两直线的距离公式为d=|C1-C2|/√(A^2+B^2)。
证明过程如下:
设两条直线方程为:
Ax+By+C1=0
Ax+By+C2=0
由两点间距离公式得:
PQ^2=[(B^2x0-ABy0-AC)/(A^2+B^2)-x0]^2
+[(A^2y0-ABx0-BC)/(A^2+B^2)-y0]^2
=[(-A^2x0-ABy0-AC)/(A^2+B^2)]^2
+[(-ABx0-B^2y0-BC)/(A^2+B^2)]^2
=[A(-By0-C-Ax0)/(A^2+B^2)]^2
+[B(-Ax0-C-By0)/(A^2+B^2)]^2
=A^2(Ax0+By0+C)^2/(A^2+B^2)^2
+B^2(Ax0+By0+C)^2/(A^2+B^2)^2
=(A^2+B^2)(Ax0+By0+C)^2/(A^2+B^2)^2
=(Ax0+By0+C)^2/(A^2+B^2)
所以PQ=|Ax0+By0+C|/√(A^2+B^2),公式得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询