为什么当x→0时,sinx

 我来答
生活小达人164I
高能答主

2022-09-12 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:34.9万
展开全部

当x→0时,xsin1/x的极限求解如下:

x→0时,1/x→∞,所以sin1/x不能等价于1/x。可以等价的:x→0时,sinx~x。x→∞时,1/x→0,sin1/x~1/x。

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式