证明:不等式a^2/(a+b)(a+c)+b^2/(b+c)(b+a)+c^2/(c+a)(c+b)≥3/4对所有正实数a,b,c都成立
1个回答
展开全部
两边同乘[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
即证:[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]*[a^2/(a+b)(a+c)+b^2/(b+c)(b+a)+c^2/(c+a)(c+b)]≥3/4[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
由柯西不等式知:左边>=(a+b+c)^2于是即证:
(a+b+c)^2>=3/4[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
即证4(a+b+c)^2>=3[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
展开整理即证:a^2+b^2+c^2>=ab+bc+ca
同乘2即证:(a-b)^2+(b-c)^2+(c-a)^2>=0显然成立.
取等a=b=c
即证:[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]*[a^2/(a+b)(a+c)+b^2/(b+c)(b+a)+c^2/(c+a)(c+b)]≥3/4[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
由柯西不等式知:左边>=(a+b+c)^2于是即证:
(a+b+c)^2>=3/4[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
即证4(a+b+c)^2>=3[(a+b)(a+c)+(b+c)(b+a)+(c+a)(c+b)]
展开整理即证:a^2+b^2+c^2>=ab+bc+ca
同乘2即证:(a-b)^2+(b-c)^2+(c-a)^2>=0显然成立.
取等a=b=c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询