求过圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点,且圆心在直线?
展开全部
本题较快的方法,还是答案的方法
解因为所求的圆经过
圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点
设圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点为M(x0,y0)
则M点的坐标满足方程x²+y²-4x+2y+λ(x²+y²-2y-4)=0
(把M点的坐标代入x²+y²-4x+2y+λ(x²+y²-2y-4)=0中
,则x²+y²-4x+2y=0,x²+y²-2y-4=0),
由方程x²+y²-4x+2y+λ(x²+y²-2y-4)=0
求出该圆的圆心,代入2x+4y-1=0即可.,4,求过圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点,且圆心在直线2x+4y-1=0上的圆的方程.
无论哪种方法都行,
另外:答案上的过程第一步是:设所求圆的方程为x²+y²-4x+2y+λ(x²+y²-2y-4)=0 为什么所求圆的方程可以写成这样?
解因为所求的圆经过
圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点
设圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点为M(x0,y0)
则M点的坐标满足方程x²+y²-4x+2y+λ(x²+y²-2y-4)=0
(把M点的坐标代入x²+y²-4x+2y+λ(x²+y²-2y-4)=0中
,则x²+y²-4x+2y=0,x²+y²-2y-4=0),
由方程x²+y²-4x+2y+λ(x²+y²-2y-4)=0
求出该圆的圆心,代入2x+4y-1=0即可.,4,求过圆x²+y²-4x+2y=0与圆x²+y²-2y-4=0的交点,且圆心在直线2x+4y-1=0上的圆的方程.
无论哪种方法都行,
另外:答案上的过程第一步是:设所求圆的方程为x²+y²-4x+2y+λ(x²+y²-2y-4)=0 为什么所求圆的方程可以写成这样?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询