求函数y=sin(2x+π/6)在x∈(π/6,π/3)时的单调区间的值域
1个回答
展开全部
∵x∈(π/6,π/3)
∴π/2<2x+π/6<5π/6
而y=sinx在(π,5π/6)上是单调递减的
所以y=sin(2x+π/6)在x∈(π/6,π/3)时是单调递减的
ymax<sinπ/2=1
ymin>sin5π/6=sinπ/6=1/2
∴值域为(1/2,1)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
∴π/2<2x+π/6<5π/6
而y=sinx在(π,5π/6)上是单调递减的
所以y=sin(2x+π/6)在x∈(π/6,π/3)时是单调递减的
ymax<sinπ/2=1
ymin>sin5π/6=sinπ/6=1/2
∴值域为(1/2,1)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询