1个回答
展开全部
(8) 原式 y = [e^(2x)-1]/[e^(2x)+1]
= [e^(2x)+1-2]/[e^(2x)+1 = 1-2/[e^(2x)+1],
y' = 2*2e^(2x)/[e^(2x)+1] = 4e^(2x)/[e^(2x)+1]
2 (1) y = x(sinlnx-coslnx)
y' = (sinlnx-coslnx) + (coslnx+sinlnx) = 2sinlnx
(3) y = √xln(1+x) - 2√x + 2arctan√x
y' = (1/2√x)ln(1+x)+√x/(1+x) - 1/√x + 1/[√x(1+x)]
= (1/2√x)ln(1+x)
(5) y = x(arcsinx)^2 + 2√(1-x^2)arcsinx - 2x
y' = (arcsinx)^2+2xarcsinx/√(1-x^2)
- 2xarcsinx/√(1-x^2)+2 - 2
= (arcsinx)^2
= [e^(2x)+1-2]/[e^(2x)+1 = 1-2/[e^(2x)+1],
y' = 2*2e^(2x)/[e^(2x)+1] = 4e^(2x)/[e^(2x)+1]
2 (1) y = x(sinlnx-coslnx)
y' = (sinlnx-coslnx) + (coslnx+sinlnx) = 2sinlnx
(3) y = √xln(1+x) - 2√x + 2arctan√x
y' = (1/2√x)ln(1+x)+√x/(1+x) - 1/√x + 1/[√x(1+x)]
= (1/2√x)ln(1+x)
(5) y = x(arcsinx)^2 + 2√(1-x^2)arcsinx - 2x
y' = (arcsinx)^2+2xarcsinx/√(1-x^2)
- 2xarcsinx/√(1-x^2)+2 - 2
= (arcsinx)^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |