线性子空间的秩怎么求?
展开全部
(1)没这么麻烦,比如V1=L(a1,a2), V2=L(a3,a4), 则L1+L2=(a1,a2,a3,a4),找极大线性无关组就行。
(2)a=k1a1+k2a2=m1a3+m2a4,则k1a1+k2a2-m1a3-m2a4=0,解齐次方程组。
首先线性子空间的维数应该等于生成这个子空间的一组基的元素个数,注意基的定义中两点:
1,线性无关。
2,能生成所有的元素。
而生成子空间的向量组,它满足2,不一定满足1,而秩的概念就是,这个向量组中,可以线性无关的最多向量数。
扩展资料:
子空间说明:
1、在宇宙大空间中,子空间是指有许多同样存在的小空间,这些小空间是并存的,而在每个空间的边缘都有类似一种间隔的存在,它们的作用就是把每个子空间隔开,但是这种间隔并不是层状的,它们像是空间一样有着自己的领域,但是在这种间隔中光飞行的速度可以达到在子空间速度的亿倍以上。
2、在矩阵中,假设U是数域K上的线性空间V的一个非空子集合,且对V已有的 线性运算满足以下条件:
(1)如果X、Y属于U,则X+Y也属于U。
(2)如果X属于U,则KX也属于U。 则称U为V的线性子空间或者子空间。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询