复变函数,(1+i)的i次方怎么计算?
答案为e^(∏/4)^(-1)(cos(ln2/2)+isin(ln2/2))(∏为圆周率)
解题过程如下:
(1+i)*i
形如a*b=e*blna
所以原式
(1+i)^i
=[e^(ln(1+i))]^i
=e^(i*ln(1+i))
=e^[i*ln(2^(1/2)(cos∏/4+i*sin∏/4))]
=e^[i*(ln2/2+i*∏/4)]
因为e^(i∏/4)=cos∏/4+isin∏/4 所以:ln(cos∏/4+isin∏/4)=i∏/4
=e^(-∏/4+iln2/2)
=e^(∏/4)^(-1)(cos(ln2/2)+isin(ln2/2))
(∏为圆周率)
以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
扩展资料
复变函数证明:
设ƒ(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|ƒ(z)-ƒ(α)|<ε恒成立,则称ƒ(z)在α处是连续的,如果在A上处处连续,则称为A上的连续函数或连续映射。
设ƒ是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|ƒ(z1)-ƒ(z2)|<ε恒成立。这个性质称为ƒ(z)在A上的一致连续性或均匀连续性。
2024-07-18 广告