∫(a,b)f(x)dx求导?
1个回答
展开全部
∫(a,b)[f(x)±g(x)]dx=∫(a,b)f(x)±∫(a,b)g(x)dx∫(a,b)kf(x)dx=k∫(a,b)f(x)dx
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
拓展资料
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
参考资料:百度百科:定积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询