第二类曲面积分转化为第一类曲面积分(当cos a有正有负时怎么做呢)??

 我来答
白露饮尘霜17
2022-10-01 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6693
采纳率:100%
帮助的人:36.4万
展开全部
从你的表述上来看,你只要化dydz为dxdy,
给出S曲面的方向即可了.
令p(x,y,z)=yf(x,y,z)+x a为曲面上点的法向量,与x轴正向的夹角,c为法向量与y正向的夹角
则∫∫S p(x,y,z)dydz=∫∫S p(x,y,z)cosads 由于dydz=cosads 所以不必考虑方向
=∫∫S p(x,y,z) cosa/cosc *cosc ds
=∫∫S p(x,y,z) cosa/cosc dxdy
所以只要确定了cosa,co *** ,cosc的正负,在曲面积分坐标转换时就不必再考虑方向问题了.
至于什么时候要考虑方向问题,我也提一下吧:
在我们要计算第二类曲面积分的时候:
出了高斯公式等,我们一般就是先把他们转化成各个坐标平面上的二重积分:
此时就应该考虑方向问题:
比如根据c (即曲面法向量与z轴的夹角)
积分曲面S由单值函数z=z(x,y)给出,S在x0y平面的投影为Dxy,
我们有∫∫S R(x,y,z)dxdy=±∫∫(Dxy) R[x,y,z(x,y)]dxdy,6,第二类曲面积分转化为第一类曲面积分(当cos a有正有负时怎么做呢)?
{{s [yf(x,y,z)+x]dydz+[xf(x,y,z)+y]dzdx+[2xyf{x,y,z)+z]dxdy,其中S是曲面z=1/2(x2+y2)介于z=2和z=8之间的曲面,法线朝上,f为连续函数.
将其转化为第一类曲线积分
求问:在化dydz时,cos a有正有负,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式