已知函数fx的定义域为0正无穷,且满足fx=2f1/x根号x-1,求fx的解析式
1个回答
展开全部
当-1≤x<0时,则:0<-x≤1
f(x)=-x-1,f(-x)=-(-x)+1=x+1
f(x)-f(-x)>-1,
即:-2x-2>-1,
得:x<-1/2
又因为:-1≤x<0
所以:-1≤x<-1/2
当0<x≤1时,则:-1≤-x<0
此时:f(x)=-x+1,f(-x)=-(-x)-1=x-1
f(x)-f(-x)>-1,
即:-2x+2>-1,
得:x<3/2
又因为:0<x≤1
所以:0<x≤1
综上,原不等式的解集为:[-1,-1/2)∪(0,1]
故答案为:[-1,-1/2)∪(0,1]
f(x)=-x-1,f(-x)=-(-x)+1=x+1
f(x)-f(-x)>-1,
即:-2x-2>-1,
得:x<-1/2
又因为:-1≤x<0
所以:-1≤x<-1/2
当0<x≤1时,则:-1≤-x<0
此时:f(x)=-x+1,f(-x)=-(-x)-1=x-1
f(x)-f(-x)>-1,
即:-2x+2>-1,
得:x<3/2
又因为:0<x≤1
所以:0<x≤1
综上,原不等式的解集为:[-1,-1/2)∪(0,1]
故答案为:[-1,-1/2)∪(0,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询