已知x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求xyz的值.
1个回答
展开全部
需要用到因式分解x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
分解过程参见:
(x+y+z)^2-(x^2+y^2+z^2)
=2xy+2xz+2yz
所以xy+xz+yz=[3*3-29]/2=-10
所以
3xyz=x^3+y^3+z^3-(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=45-3*[29-(-10)]
=-72
xyz=-24
分解过程参见:
(x+y+z)^2-(x^2+y^2+z^2)
=2xy+2xz+2yz
所以xy+xz+yz=[3*3-29]/2=-10
所以
3xyz=x^3+y^3+z^3-(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=45-3*[29-(-10)]
=-72
xyz=-24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询