函数是在某个区间(a0,b0)内连续的吗?
1个回答
展开全部
不是。
首先,函数在点x0处可导,则函数在点x0处连续。进而存在一个x0的邻域,函数在这个邻域内连续。注意“存在”二字。
其次,可以认为邻域是一个微观的概念。邻域的半径是不确定的,一般认为很小很小(甚至可以认为比任意的具体的正实数都要小,但是一个正数),只是一个定性的描述。
最后,举反例。对于函数y=1/x,在x=1/200处是可导的,在邻域(1/200-1/200,1/200+1/200)是连续的,但是在邻域(1/200-1/100,1/200+1/100)是不连续的。
简介
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
常用的连续性的最根本定义是在拓扑学中的定义,在条目连续函数 (拓扑学)中会有详细论述。在序理论特别是域理论中,有从这个基础概念中得出的另一种抽象的连续性:斯科特连续性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询