虚数i的平方等于多少?
展开全部
虚数的平方是虚数或负实数。
虚数 分为纯虚数和非纯虚数,纯虚数ai的平方=a的平方的负数,其中a是实数且不等于0。非纯虚数a+bi,a、b是实数且不等于0。
数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
扩展资料:
17世纪著名数学家笛卡尔所著《几何学》(法语:La Géométrie)一书中,命名其为nombre imaginaire(虚构的数),成为了虚数(imaginary number)一词的由来。
后来在欧拉和高斯的研究之后,后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复数平面,复数平面上每一点对应着一个复数。
在几何学上,复数平面的垂直轴表示虚数,它们与代表实数的水平轴垂直。查看虚数的方法之一是参考虑标准数线:往右侧正幅度增长,往左侧则负幅度减少。在x轴的0点处,往上升方向可绘制y轴的“正”虚数,然后向上增加;而“负”虚数则往下增加。
参考资料来源:百度百科——虚数
展开全部
虚数i的平方等于负1,以下是其定义:
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字,后来发现虚数a加b乘i的实部a可对应平面上的横轴虚部b与对应平面上的纵轴,这样虚数a加b乘i可与平面内的点a,b相对应,虚数可以指不实的数字或并非表明具体数量的数字,在数学中,虚数就是形如a加b乘i的数,其中a,b是实数,且b不等于0时,i的平方等于负1。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字,后来发现虚数a加b乘i的实部a可对应平面上的横轴虚部b与对应平面上的纵轴,这样虚数a加b乘i可与平面内的点a,b相对应,虚数可以指不实的数字或并非表明具体数量的数字,在数学中,虚数就是形如a加b乘i的数,其中a,b是实数,且b不等于0时,i的平方等于负1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-1
解:
由i的定义可知,
i²=-1
解:
由i的定义可知,
i²=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等于-1。望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
负一
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询