a为有理数,x为无理数,求证:a+x为无理数.

 我来答
大沈他次苹0B
2022-08-06 · TA获得超过7340个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
这道题要用反证法
首先要明白有理数的定义,有理数包括整数和分数,也就是是说只要是有理数,就一定可以写成a/b的形式,其中a、b为整数.
下面开始证明:
证明:
假设a+x为有理数
则设a+x=c/b (c、b为整数)
同理令a=e/f (e、f为整数)
则bf(a+x)是整数
分解因式 bfa+bfx
=be+bfx
则说明be+bfx为整数
be显然是整数
则说明bfx是整数
但bf是整数,x是无理数,整数*无理数不可能为整数(如果能,则可以写成a/b的形式,就是有理数了)
所以be+bfx不为整数,与假设矛盾
所以a+x为无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式