如何求出一个矩阵的特征值和特征向量?
2个回答
展开全部
令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。
设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,
∵t不是零向量
∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,
∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,b=0,a+c=0,对应x=2的特征向量为(-1,0,1)(未归一化),其它x的一样做。
求矩阵的全部特征值和特征向量:
1、计算的特征多项式;
2、求出特征方程的全部根,即为的全部特征值;
3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)
[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
以上内容参考:百度百科-特征值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
2023-05-18
展开全部
求解矩阵的特征值和特征向量可以通过以下步骤进行:1. 计算矩阵的特征多项式:先将矩阵A表示为:A = [a11 a12 ... a1n a21 a22 ... a2n ... an1 an2 ... ann]然后,计算特征多项式P(λ) = det(λI - A),其中λ是待求的特征值,I是单位矩阵。2. 求解特征多项式的根:解特征多项式P(λ) = 0,可以得到矩阵A的所有特征值λ1,λ2,…,λn。3. 计算每个特征值对应的特征向量:对于每特征值λi,求解方程组(A-λiI)x=0,其中I是单位矩阵,可以得到特征向量x1,x2,…,xm。特别地,当特征值的重数大于1时,需要求解对应特征值的Jordan标准形式,并进一步求解Jordan块上的特征向量。注:这是基于线性代数理论的计算方法,如果使用计算机求解矩阵的特征值和特征向量,可以使用相应的数值计算软件或库函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询