欧氏几何与非欧几何有何区别?
展开全部
欧氏几何与非欧几何的区别主要是在对平行公理的不同描述上。欧氏几何的平行公理是:过已知直线外一点,只有一条直线与已知直线平行。非欧几何把平行公理改变为:过已知直线外一点,至少有两条直线与已知直线平行(罗巴切夫斯基),或者是:过已知直线外一点,不存在一条直线与已知直线平行(黎曼)。基于这三种不同的平行公理可以推导出三种不同的几何体系来。
欧氏几何与非欧几何的区别还可以从三角形的内角和定理表现出来。欧氏几何的
三角形的内角和等于180°。在罗巴契夫斯基几何中,三角形的内角和总是小于180°;而在黎曼几何中,三角形的内角和总是大于180°。直观上看,欧氏空间是平直空间。而非欧几何空间是凹凸的空间。在小尺度范围内,我们所处的空间近似于平直的,欧氏几何的公理是适用的。但是在微尺度和宏尺度范围,欧氏几何就不再适用,非欧几何可以更好地描述非平直(非均匀)空间的各种现象。爱因斯坦的广义相对论就是建立弯曲时空的基础上的。在这方面黎曼几何得到了许多重要的应用。
欧氏几何与非欧几何的区别还可以从三角形的内角和定理表现出来。欧氏几何的
三角形的内角和等于180°。在罗巴契夫斯基几何中,三角形的内角和总是小于180°;而在黎曼几何中,三角形的内角和总是大于180°。直观上看,欧氏空间是平直空间。而非欧几何空间是凹凸的空间。在小尺度范围内,我们所处的空间近似于平直的,欧氏几何的公理是适用的。但是在微尺度和宏尺度范围,欧氏几何就不再适用,非欧几何可以更好地描述非平直(非均匀)空间的各种现象。爱因斯坦的广义相对论就是建立弯曲时空的基础上的。在这方面黎曼几何得到了许多重要的应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询