直线方程与参数方程有何区别?

 我来答
yqsy一切隨缘
高能答主

2023-01-12 · 把复杂的事情简单说给你听
知道顶级答主
回答量:6.3万
采纳率:92%
帮助的人:5091万
展开全部
标准方程是:(x-a)²+(y-b)²=r²,其中(a,b)表示圆心,半径是r;一般方程是:x²+y²+dx+ey+f=0,其中d²+e²-4f>0。直角坐标方程是一个曲线方程在直角坐标下的形式f(x,y)=0,对应的有极坐标形式。
参数方程是在曲线方程中引入参数来表示,如x=rcosa,y=rsina;引入参数a来表示x,y。普通方程如果你指的是圆锥曲线就是最一般广义的形式Ax^2+By^2+Cxy+Dx+Ey+F=0;
标准方程是指一些曲线如圆,椭圆,对称中心在坐标原点,并且关于坐标轴对乘,没有平移或者旋转的方程形式。直线方程从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;
只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
表示形式1、点斜式:y-y0=k(x-x0) (适用于不垂直于x轴的直线),表示斜率为k,且过(x0,y0)的直线。
2、截距式:x/a+y/b=1(适用于不过原点或不垂直于x轴、y轴的直线),表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。3、斜截式:y=kx+b(适用于不垂直于x轴的直线),表示斜率为k且y轴截距为b的直线。
霖霖箖
高能答主

2022-11-07 · 学习是一条永无止境的路,努力才出彩人生。
霖霖箖
采纳数:106 获赞数:2135

向TA提问 私信TA
展开全部

标准方程是:(x-a)²+(y-b)²=r²,其中(a,b)表示圆心,半径是r;一般方程是:x²+y²+dx+ey+f=0,其中d²+e²-4f>0。

直角坐标方程是一个曲线方程在直角坐标下的形式f(x,y)=0,对应的有极坐标形式。参数方程是在曲线方程中引入参数来表示,如x=rcosa,y=rsina;引入参数a来表示x,y。

普通方程如果你指的是圆锥曲线就是最一般广义的形式Ax^2+By^2+Cxy+Dx+Ey+F=0;标准方程是指一些曲线如圆,椭圆,对称中心在坐标原点,并且关于坐标轴对乘,没有平移或者旋转的方程形式。

直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。

常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。

直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

表示形式

1、点斜式:y-y0=k(x-x0) (适用于不垂直于x轴的直线),表示斜率为k,且过(x0,y0)的直线。

2、截距式:x/a+y/b=1(适用于不过原点或不垂直于x轴、y轴的直线),表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。

3、斜截式:y=kx+b(适用于不垂直于x轴的直线),表示斜率为k且y轴截距为b的直线。

4、交点式:f1(x,y) *m+f2(x,y)=0 (适用于任何直线),表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。

5、点平式:f(x,y) -f(x0,y0)=0(适用于任何直线),表示过点(x0,y0)且与直线f(x,y)=0平行的直线。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式